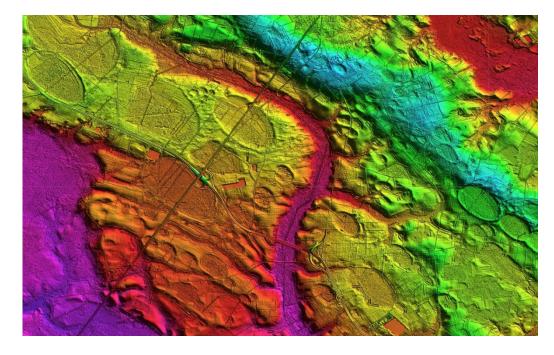


3DGeo Stakeholder Coordination: MN Lidar Plan Central and Upper Mississippi River LABs - USGS 3DEP Grant Application Discussion

Monday August 23, 2021 - 1:00 - 3:00

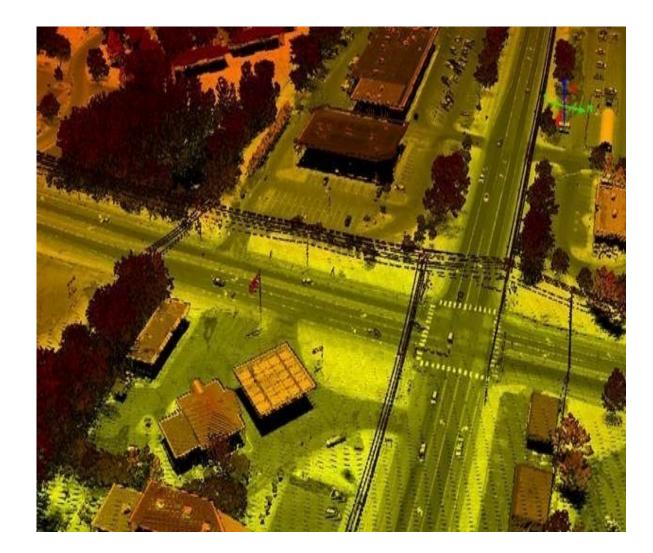
Presented by the Geospatial Advisory Council (GAC) - 3D Geomatics Committee's Data Acquisition Workgroup


Jesse Reinhardt Gerry Sjerven Sean Vaughn Jennifer Corcoran Alison Slaats

Please stand by as other participants join, we will get started soon. Thank you

Welcome!

Thank you for joining us today


- We are excited to meet with you today to discuss lidar acquisition planning efforts in Minnesota.
- Members of the 3D Geomatics Committee Lidar Acquisition Workgroup will be introducing 3DGeo, sharing updates, and information about next steps for lidar collection for Minnesota.
- We welcome your input today and going forward.

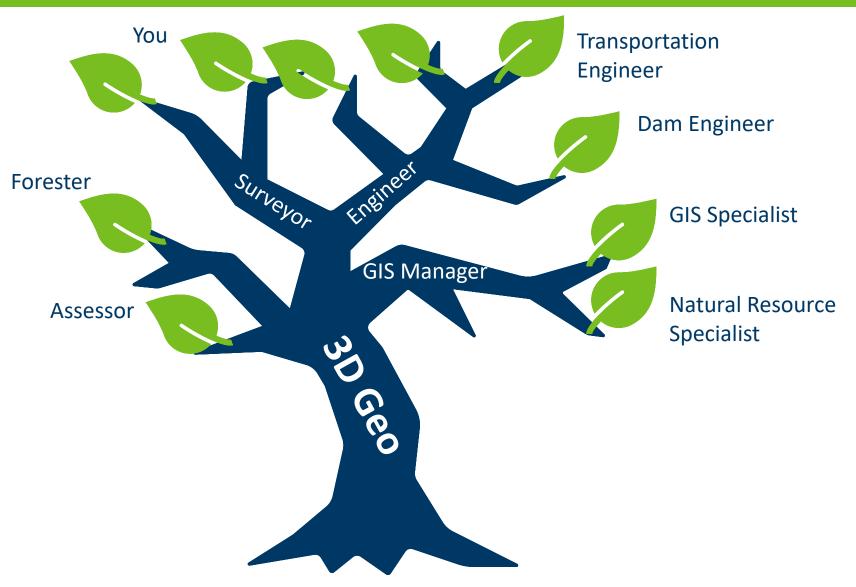
Meeting Housekeeping

<u>Please mute your microphone if</u> you're not speaking

- A meeting recording and presentation slides will be shared after the meeting
- Type in questions into the chat window, and we'll address them during the Q&A section (not recorded)

Goals for today

- Who is 3D Geomatics (**3DGeo**)?
- USGS 3D Elevation Program (**3DEP**) and Broad Agency Announcement (BAA) submission process
- Lidar Quality Levels
- **Roles** of USGS, state, county and local partners
- **Contract** administration and fund match structure
- **Cost estimates** and partner participation specific to each region
- Communication and **next steps**
- Question and answer



Collaboration – Individual Stakeholder

You don't have to have money or be a decision maker to be a stakeholder . . .

You can be a voice of support . . .

A collaborator

Coordinating Minnesota's Lidar Acquisition Management

Geospatial Advisory Council (GAC) - 3D Geomatics Committee

Geospatial Advisory Council

- The Minnesota *Geospatial Advisory Council (GAC)* is the coordinating body for the Minnesota geospatial community.
- **Cross-section of organizations** that include counties, cities, universities, business, nonprofit organizations, federal and state agencies, tribal government, and other stakeholder groups.

3D Geomatics Committee?

 The *3D Geomatics Committee* (3DGeo) is a committee under GAC that works to identify and promote the need for planning, funding, acquisition, and management of three-dimensional geomatic data and derived products.

_						
	GEOSPATIAL ADVISORY COUNCIL					
GAC Rank	Project or Initiative Name					
1	All public geospatial data in MN to be free and open to everyone					
2	Updated and aligned boundary data from authoritative sources					
3	The implementation of an archive for Minnesota geospatial data					
4	Statewide publicly available parcel data					
5	Improvements to the MnGeo Imagery Service, such as Web					
	Mercator support, tiling, and complementary options such as					
	"composite of latest leaf off imagery", and downloading options					
6	Accurate hydro-DEMs (hDEM) that serve modern flood modeling					
	and hydro-terrain analysis tools, and the development of more					
	accurate watercourses and watersheds					
7	Statewide publicly available road centerline data					
8	New LiDAR data acquisition across Minnesota for use in					
	developing new derived products guided by committee developed					
	standards					
9	An emergency management damage assessment data standard to					
	provide an accepted specification to support a request for State					
	or Federal assistance after a disaster					
10	Statewide publicly available address points data					
11	Maps, procedures, templates and other materials to help all levels					
	of government implement the U.S. National Grid					
12	A parks and trails data standard					
13	A forum (committee, workgroup, etc.) for MN geospatial					
	professionals to discuss and share best practices, standards,					
lessons learned, etc. for implementing and supporting the						
	geospatial components of NG9-1-1					

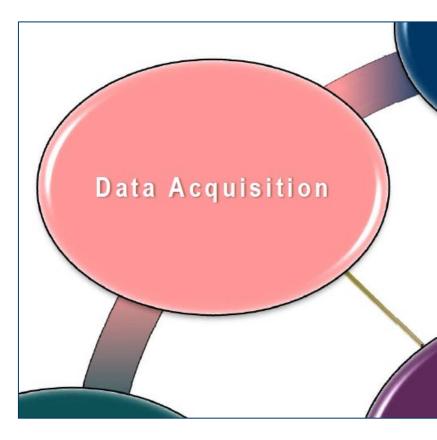
3DGeo Workgroups

3DGeo Executive Steering Team

- Workgroups/Subgroups
 - Hydrogeomorphology
 - 1. Data Catalog
 - 2. Foundational Hydrography Data Stewards
 - 3. DEM Hydro-modification
 - Vegetation
 - Education
 - Human Infrastructure
 - Data Acquisition

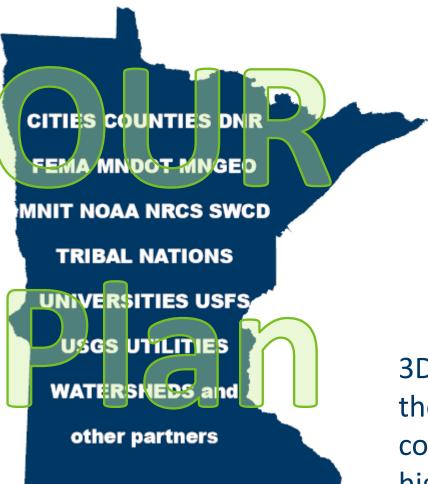
3DGeo - Data Acquisition Workgroup

Mission:


• The Data Acquisition Workgroup promotes procurement of foundational 3D data for Minnesota.

Co-Chairs

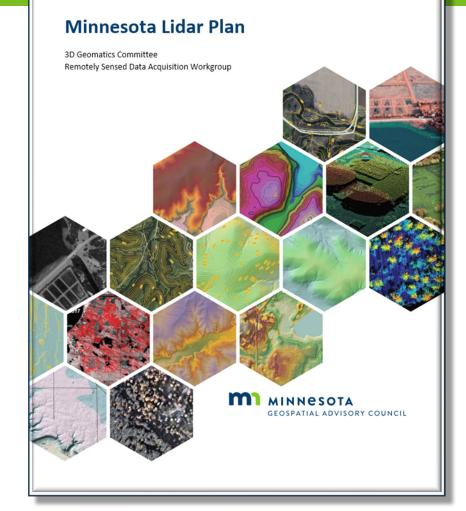
• Sean Vaughn, Alison Slaats, and Gerry Sjerven


Lidar Acquisition Subgroup:

 Alison Slaats (MnGeo), Sean Vaughn (MNIT DNR), Gerry Sjerven (MN Power), Dan Ross (MnGeo), Jennifer Corcoran (DNR), Colin Lee (MnDOT), Matt Baltes (NRCS), Joel Nelson (U of MN), Joe Sapletal (Dakota Co), Mark Reineke (Widseth), and Brandon Krumwiede (NOAA), Jeff Weiss (DNR).

Minnesota Lidar Plan

Minnesota Lidar Plan - Our Plan – Your Plan – One Plan



The Minnesota Lidar Plan

- One plan for Minnesota
- **Committee** led plan, not a state agency plan
- **Collaboration** of the geospatial community
- Coordination of lidar acquisition in Minnesota leverages federal match dollars

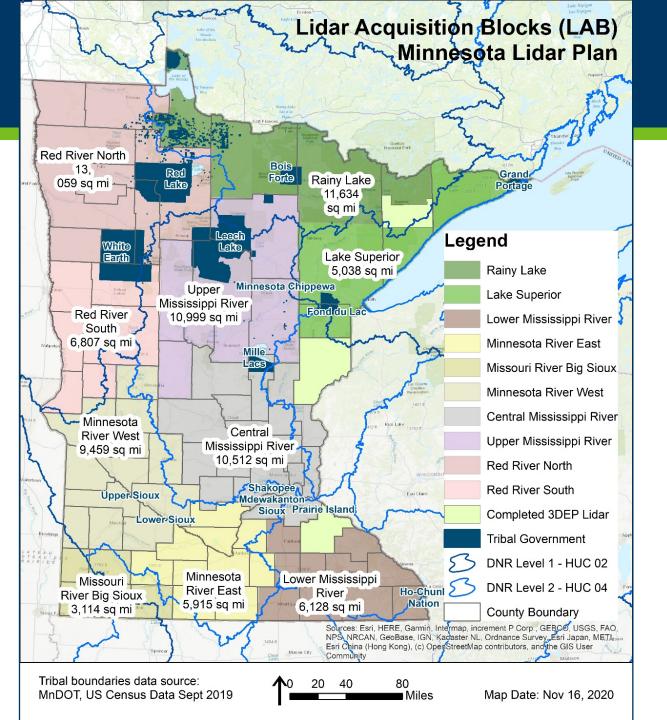
3DEP grant success is built on a guiding plan that pulls the community together to foster collaboration and coordinate funding to achieve the common goal of high density lidar acquisition across Minnesota

Minnesota Lidar Plan and StoryMap

https://www.mngeo.state.mn.us/committee/3dgeo/ac guisition/Minnesota State Lidar Plan.pdf

m

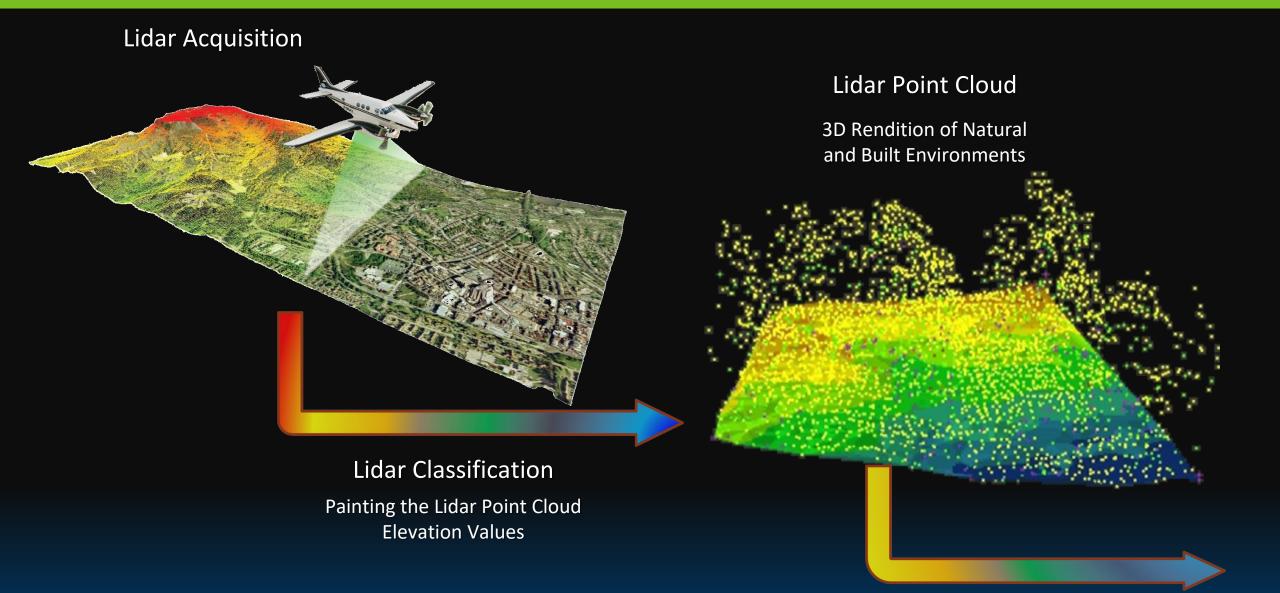
The Minnesota Lidar Plan

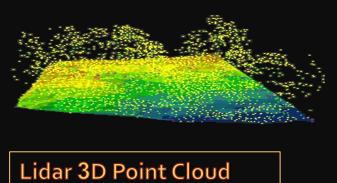

An introduction to lidar, how it is used in Minnesota, and the Minnesota Lidar Plan.

November 17, 2020

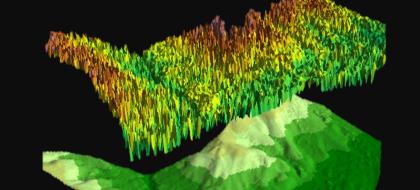
http://bit.ly/MnLidarPlanStoryMap

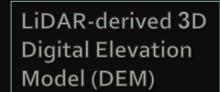
()


Lidar Acquisition Areas and Blocks of Interest


Lidar Planning – Background

- Lidar acquisitions are coordinated by the GAC's **3DGeo Committee**
- Minnesota's Lidar Plan divides up the state into lidar acquisition areas (LAA) based on political (county) and watershed boundaries
- **Grant funds** are available from USGS for lidar acquisition because there is a localto-national scale need for a seamless nationwide DEM elevation layer
- 3DGeo is working to coordinate lidar acquisition with local, federal, and state partnerships
 - Leveraging USGS federal funding opportunity
- Economies of scale are achieved when partners collaborate across landscapes
 - The bigger the collection footprint, the lower the cost


Lidar Acquisition → Point Cloud



Lidar Acquisition \rightarrow Point Cloud \rightarrow Classification \rightarrow DEM

 Point Cloud Classification – Feature Identification and Separation of Data for Sector Application

What is Lidar?

To Some Lidar Is:

• A 3D Point Cloud

To Some:

- 2-ft Contours
- Digital Elevation Model (DEM)

Note: The two most downloaded authoritative lidar-derived products from MnTOPO are the 2-ft Contours and the DEM.

To Some:

- Hydro-modified DEM & Hydrography
- 1-ft contour Dataset
- Vegetation and Buildings
- Intensity Imagery
- Digital Surface Model (DSM)
- And Many other products

Regardless what lidar is to you and your business needs, "lidar" begins with collection of the lidar data as part of a data procurement project, within a 3D Geomatics lidar acquisition block (LAB).

Data Procurement

Data Development

Data Dissemination

3DEP

BAY

CHANNEL

16

LOUIS

ST

High

Oneota

(Federal Coordination and Grant)

Clough 25

Vest Duluth

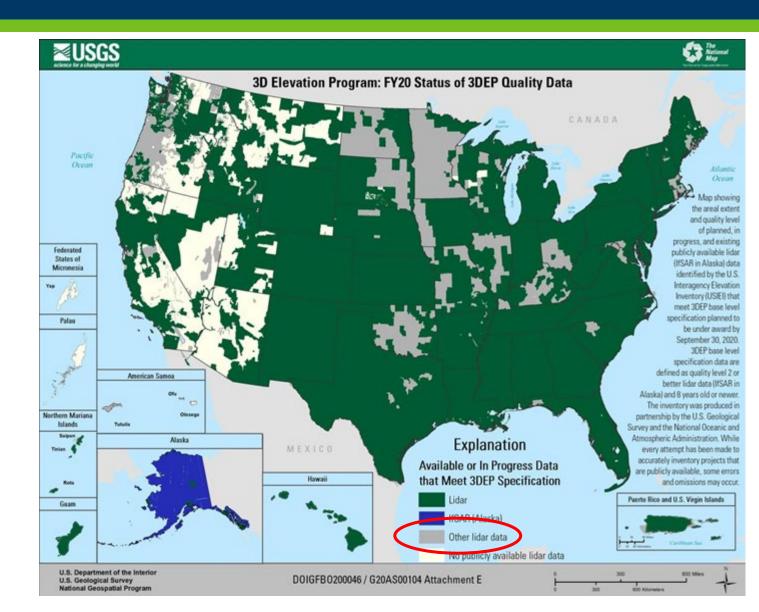
Bayyigw

Riverside

tiang Park

Proctor

N


USGS 3D Elevation Program (3DEP)

3D Elevation Program (3DEP)

• Systematically guiding the collection of 3D elevation data in the form lidar data for the United States, and the U.S. territories

Broad Agency Announcement (BAA)

- Grant coordinating mechanism 3DEP
- Guides partnerships between the USGS and other Federal agencies with other public and private entities seeking high-quality 3D lidar elevation data acquisition.

USGS 3D Elevation Program (3DEP) - IGCE

Independent Government Cost Estimate (IGCE)

- Formal federal contracting process
 - The government is entitled to receive quality supplies and services at fair prices. Under normal market conditions, competing offers ensure that adequate value is received. The contracting officer relies on the IGCE to assist in the determination of the acquisition strategy, as well as an estimated cost for the proposed effort.
 - Uses vendor proposals, historical rates, and other information
- Not unique to this lidar acquisition project or 3DEP
- 3DEP BAA process uses Attachment C to solicit a PRELIMINARY Independent Government Cost Estimate.
- Due September 3rd
- Provides an estimate of project costs sufficient for project planning and partnership development.
 - A full and final IGCE will be completed after award

3D Geomatics Funding Agreements

Contributions to Minnesota Lidar (millions)

- Minnesota Partners: \$3.15
- USGS 3DEP:
- Other Federal
 - \$<u>0.448</u> Total: \$**9.77**M

\$6.18

The State (MnGeo) Serves as the fiscal Agent with Minnesota Partners

- MnGeo will establish funding agreements with funding partners
- MnGeo will establish funding agreement(s) with USGS 3DEP

Lidar Quality Levels – Lidar Specifications

Three standards provide guidance and protocol documentation for lidar data procurement, processing, management, and accuracy assessment for certification.

- 1. Positional Accuracy Standards for Digital Geospatial Data [2014] Developed by the American Society for Photogrammetry and Remote Sensing (ASPRS) to validate the positional accuracy data.
 - This nationally recognized document defines and categorizes vertical and horizontal accuracy of elevation data, which
 includes elevation data derived from lidar.
- Federal Geographic Data Committee (FGDC) [1998] Developed by the federal Office of Management and Budget Circular A-16 to promote the coordinated development, use, sharing, and dissemination of geographic data.

Lidar Quality Levels – Lidar Specifications

Three standards (continued)

- 3. Lidar Base Specification (LBS) [2013 to present version] Developed by U.S. Geological Survey (USGS), through its National Geospatial Program (NGP) to support 3DEP lidar consistency across all USGS and partner-funded lidar acquisitions.
 - The LBS places particular emphasis on the development of uniformly formatted and organized data, as it moves from the vendor, to the USGS and into the hands of the funding partners.
 - Technical protocol outlined in the LBS supports the entire data development process from procurement to quality control, accuracy classification, data point classification, development of derived products, and data delivery to partners

Lidar Quality Levels – 3DEP Lidar Base Specifications

Tables 1-6 of the lidar base specification online, provide lidar specifications

- Aggregate nominal **pulse spacing** (m) and **pulse density** (pls/m2) are the same for QL1 and QL0 lidar.
- The required **absolute** non-vegetated vertical accuracy (NVA) and **absolute** vegetated vertical accuracy (VVA) of QL0 data is two times that of QL1 data.

Recently Recognized Criteria

- Positional Accuracy Standards for Digital Geospatial Data (<u>ASPRS, 2014</u>) require that the checkpoint survey used to verify vertical accuracy must be "*three times more accurate than the expected airborne lidar NVA*".
 - ✓ QL1 checkpoint survey must achieve a root mean square error in the z direction (RMSEz) of ≤ 3.33 cm for a 10 cm NVA RMSEz.
 - ✓ A QL0 checkpoint survey must achieve ≤ 1.67 cm RMSEz for a 5 cm NVA RMSEz. To achieve this level of accuracy, it is likely that QL0 checkpoint surveys will require static and redundant surveys rather than the RTK survey techniques commonly used

Lidar Quality Levels - Costs

	Quality Level (QL)	Average Cost per mi ^{2*}
No Longer Supported by 3DEP ——	QL-0	\$N/A
3DGeo QL0.5:30 (Goodhue)	QL-0.5:30	\$440
3DGeo Statewide Recommendation	QL-1	\$330
USGS Base Specification ————————————————————————————————————	QL-2	\$200
Current Statewide Lidar	QL-3	\$175

*Please note the following, regarding the above cost estimates:

- Estimates where obtained in 2020.
- These average estimates are based on a series of USGS 3DEP Independent Government Cost Estimate (**IGCE**) quotes. Actual cost estimates are subject to change based on a proposed area of interest.
- The 3DGeo Committee advocates for QL1 lidar and will assist partners to explore acquiring upgrades and additional derived products in their area of interest (e.g., QL0.5). An upgrade to point density or additional derived products will increase costs and will be the responsibility of the requesting partner(s).
- QL3 no longer meets USGS Base Specification, it is crossed out because it would not be purchased under this Lidar Plan.

USGS 3DEP Broad Agency Announcemnt (BAA) Statement of Work (SOW) & Task Order Lidar Acquisition Specifications

Lidar Quality Levels Adopted from 3DEP Lidar Base Specification (LBS)	LBS Table-2: Aggregate Nominal Pulse Spacing (ANPS) [m]	LBS Table-2: Aggregate Nominal Pulse Density (ANPD) [pulse/m ²]	LBS Table-4: Absolute Vertitcal Accuracy RMSEz (Non-vegetated) [m] Alternative Units ([cm] / [in] / [ft])	ASPRS Checkpoint Vertical Survey Requirement 3-times More Accurate than Non-vegetated RMSEz (3xRMSE2) [m] Alternative Units ([cm] / [in] / [ft])	LBS Table-6: DEM Cell Size [m]	Delivered Point Density [point/m ²]	Cost Estimate Based on formal 2020 IGCE (expected to be updated in September 2021) [mile ²]
QLO (ASPRS Accuracy Compliant QLO)	≤ 0.35	≥ 8.0	≤ 0.05 m ≤ 5.0 cm ≤ 1.969 in ≤ 0.164 ft	≤ 0.017 m ≤ 1.667 cm ≤ 0.656 in ≤ 0.055 ft	0.5 m	≥ 8.0	Not Supported by 3DEP
QL0 (ASPRS Accuracy Compliant QL0) [LeSueur and OImsted Counties]	≤ 0.35		≤ 0.05 m ≤ 5.0 cm ≤ 1.969 in ≤ 0.164 ft	≤ 0.017 m ≤ 1.667 cm ≤ 0.656 in ≤ 0.055 ft	0.5 m	≥ 30.0	Unknown at this time, we hope to learn more by end of year from vendors efforts this fall
3DGeo QL0.5:30 (Goodhue County Lidar Criteria)	≤ 0.35	≥ 8.0	<pre>> 0.05 m to < 0.10 m > 5.0 cm to < 10.0 cm > 1.969 in to < 3.937 in > 0.164 ft to < 0.328 ft</pre>	<pre>> 0.0167 m to < 0.0333 m > 1.667 cm to < 3.333 cm > 0.656 in to < 1.312 in > 0.055 ft to < 0.109 ft</pre>	0.5 m	≥ 30.0	\$440
QL1 (ASPRS Accuracy Compliant QL1)	≤ 0.35	≥ 8.0	≤ 0.100 m ≤ 10.0 cm ≤ 3.937 in ≤ 0.328 ft	≤ 0.033 m ≤ 3.333 cm ≤ 1.312 in ≤ 0.109 ft	0.5 m	≥ 30.0	No 2020 IGCE. Requires a 2021 IGCE submission to obtain a cost/m ² .
QL1 (ASPRS Accuracy Compliant QL1)	≤ 0.35	≥ 8.0	≤ 0.100 m ≤ 10.0 cm ≤ 3.937 in ≤ 0.328 ft	≤ 0.033 m ≤ 3.333 cm ≤ 1.312 in ≤ 0.109 ft	0.5 m	≥ 8.0	\$330

Quality Levels

What is: High-density Lidar

Need for New High-density Lidar

- Update our existing Lidar data holdings which are now a decade old.
- Improves our ability to analyze the landscape in Minnesota, map assets, and assess resources
- Provides the foundation for development of updated authoritative derived products to support analysis and informed decision-making
- Enables practitioners, managers, and researchers to be more **proactive** than reactive.

Lidar point cloud colorized by photograph pixel colors

3DEP Program – Baseline Deliverables

3DEP Standard Deliverables

- Point Cloud (classified to minimum level meets most needs; data hosted online)
- Digital Elevation Model (**DEM**/Bare-Earth Surface Raster)
- Lidar Swath Polygon
- Hydro-breaklines
- Metadata & Reports

3DEP Program – Upgrades and Enhancements

Possible Added Deliverables

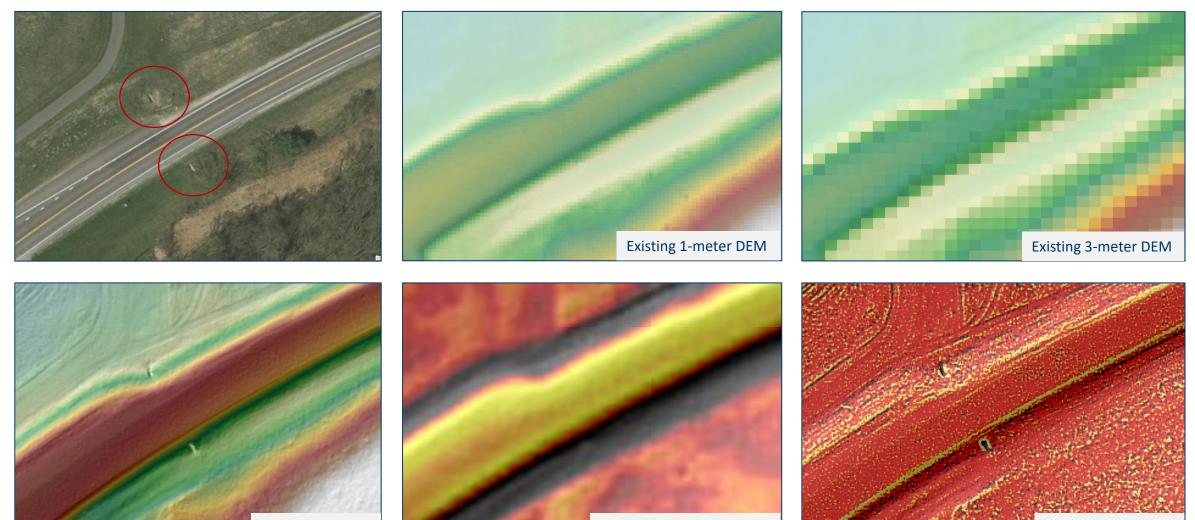
- Possible deliverables not funded by 3DEP, but can be part of the 3DEP contract as additional products and services with the 3DEP contract vendor at an additional cost
 - Higher density Point Cloud
 - 3DGeo advocates for QL1, partners may upgrade areas to QL0
 - Improved hydrographic products
 - ✓ Advanced hydro-modified DEM (Conditioned DEM), and/or hydro-flattening
 - Bare Earth point cloud
 - Additional Point Classification
 - ✓ High vegetation and **buildings**
 - Intensity imagery, GeoTIFF

State Agency Deliverables - Lidar Derived Products

Foundational Derived Products

- Publicly available data served as authoritative products from state agency distribution portals
 - 1-ft Contour Dataset
 - Hillshaded DEM
 - Canopy Height Model (CHM)
 - Other products to come?

HD Lidar – Derived Products - Hydrography Example

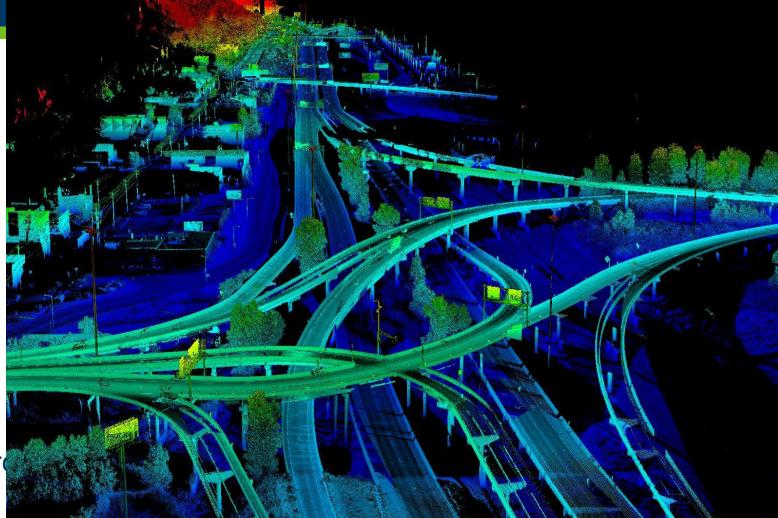

WATER CONVEYANCE LANDFORMS

Mapping the Unmapped Hydrography

rography		. ?? 7.17
 Features of hydrologic Significance. Nickpoint Fluvial Processes 		
 Soil Degradation 	We Model this	ZISK
Where does the watercourse begin ?	with DEMs	
 Where concentrated flow begins. LiDAR captures these landform. 		

HD Lidar Examples: Hydrography & Infrastructure Culvert Capture High Density QL0 (30pts/m²)

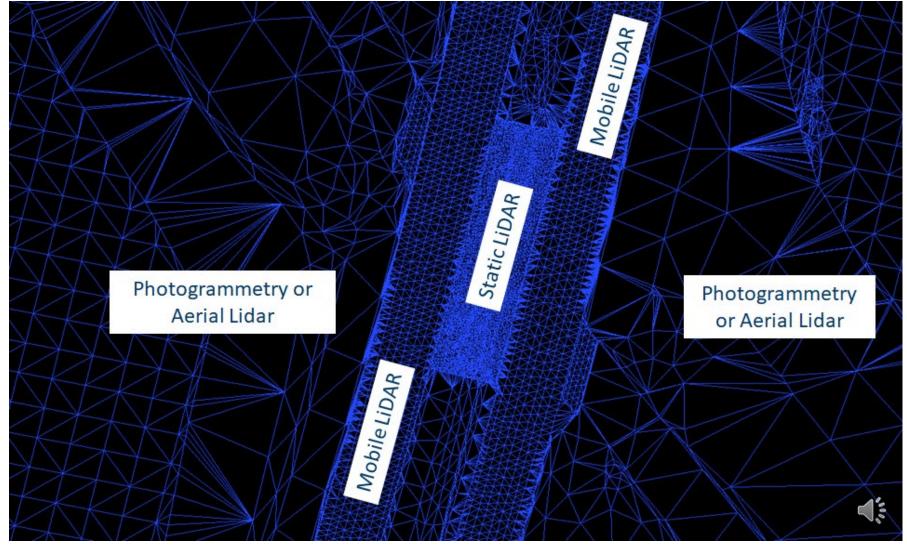
QL0 1-foot DEM


Existing 3-meter DEM HPI

QL0 1-foot DEM HPI

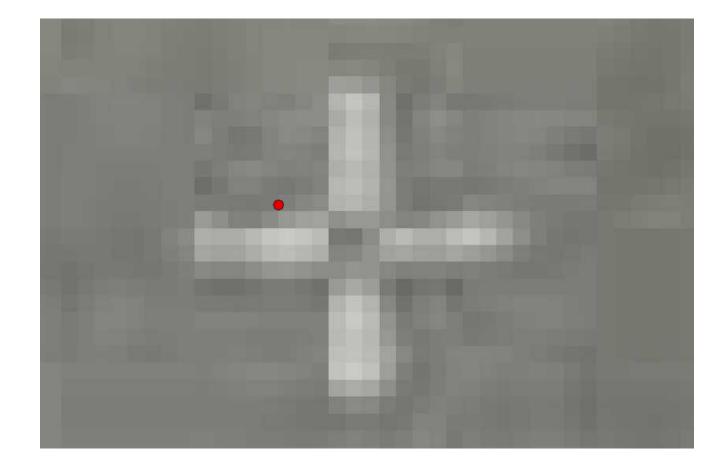
HD Lidar Examples: MnDOT Infrastructure

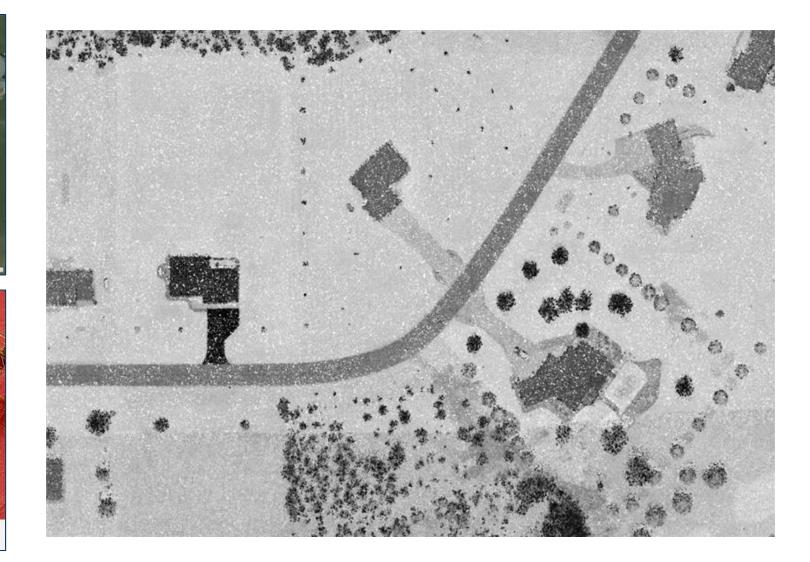
• Transportation


- 3d Design
- Traffic operations
- Signing and striping
- Highway safety
- Maintenance
- Asset management
- Energy
 - Traditional
 - Renewable/Alternative
- Cultural/Historical Resource

HD Lidar Examples: MnDOT Infrastructure

Supporting Corridor Mapping

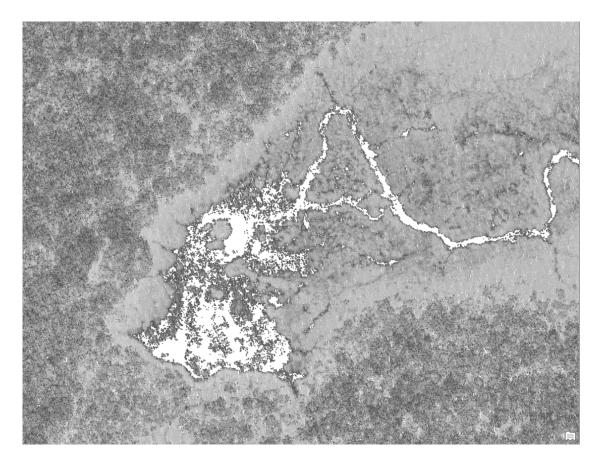

- New HD lidar can replace existing mapping methods
- Existing lidar no longer reliably supports many engineering products
- New lidar could supplement these types of mapping projects for up to 80% saving in time.


HD Lidar Examples: Infrastructure

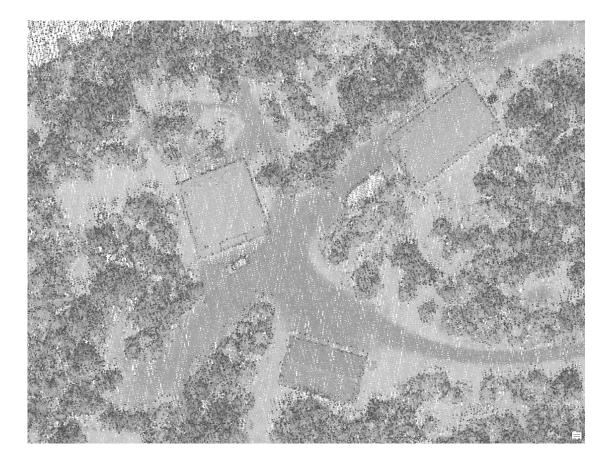
Supporting Orthomosaic Creation

- New HD lidar can replace existing mapping methods
- Existing lidar no longer reliably supports the creation of high resolution orthophotos

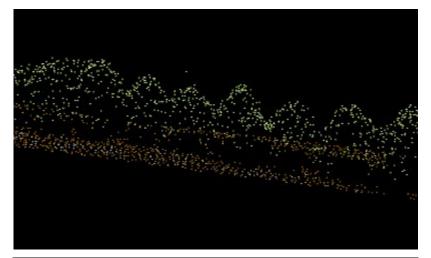
HD Lidar Examples – Lidar Intensity High Density QL0 (30pts/m²)

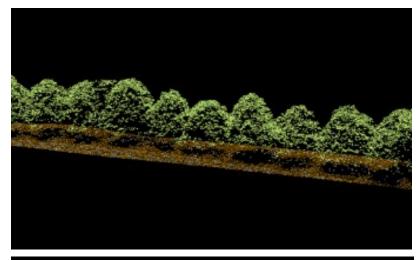


HD Lidar Examples - Lidar Intensity


NE Forested LAA, QL1 Lidar Intensity - Hydrography Capture

HD Lidar Examples - Lidar Intensity


NE Forested LAA, QL1 Lidar Intensity - Infrastructure Capture

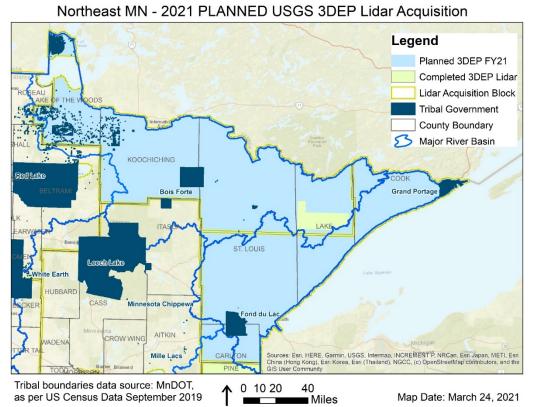

HD Lidar Examples: Vegetation Mapping

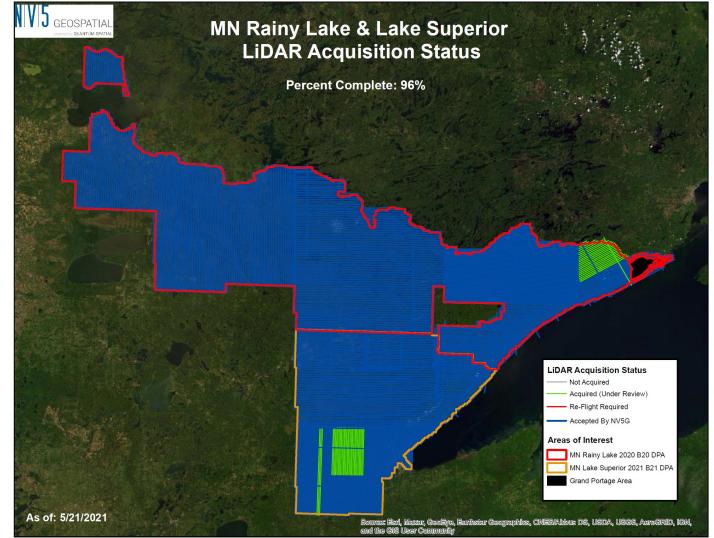
Low Density (QL3, 1ppm)

High Density (QL1, 8+ppm)

HD Lidar Examples: Floodplain Mapping (Hydro, Infrastructure & Forest)

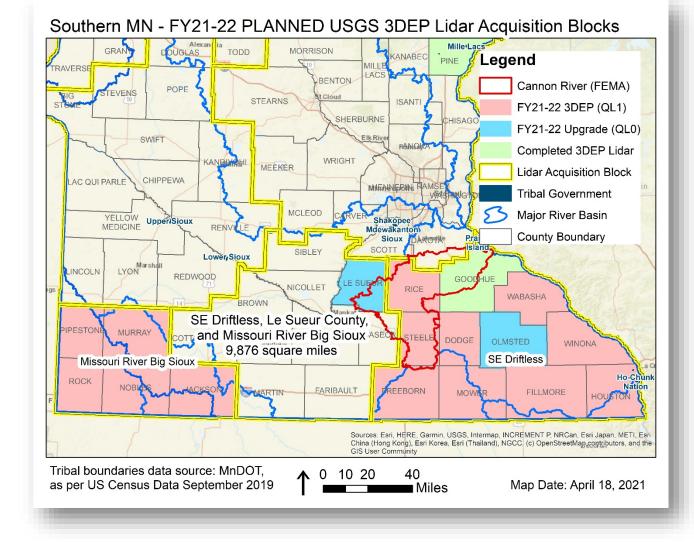
2021 - Progressive Approach


- New high density lidar not only maps this area of flood inundation but it maps all the infrastructure assets in the image.
- We have an opportunity to be **proactive** and map this entire scene.



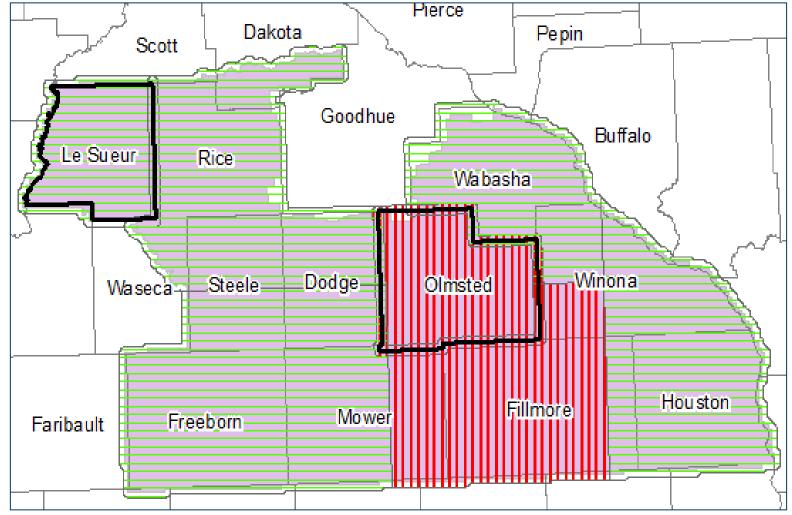
Next: Lidar Collect

Lidar Acquisition: Northeast – Rainy Lake & Lake Superior Block


• Rainy Lake and Lake Superior Block data collections are almost done!

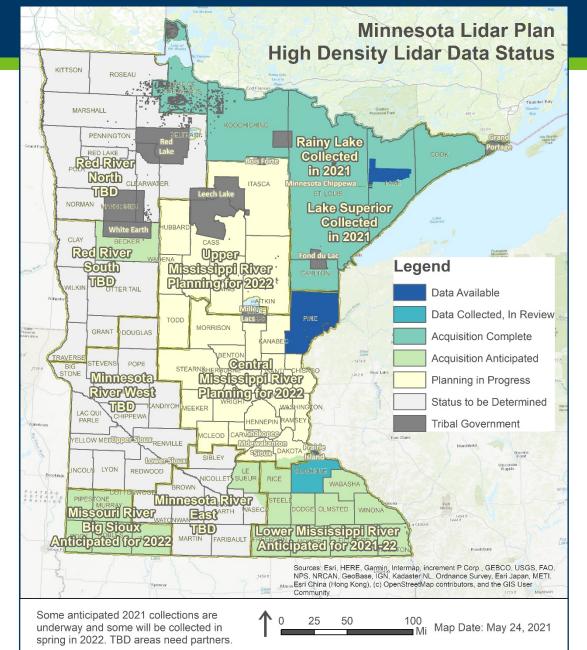
Lidar Acquisition: Southern BAA – Missouri Big Sioux & SE Driftless Blocks

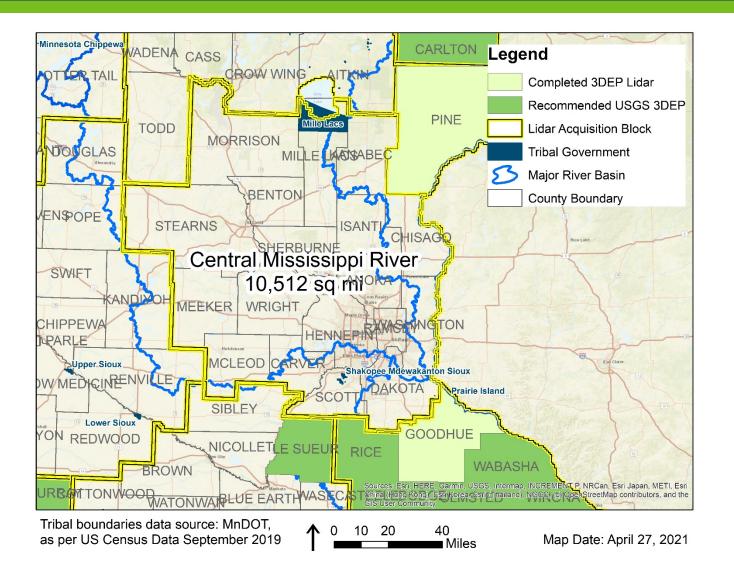
- BAA (west and east) split between two vendors and two JFA's.
 - Partners: USGS, NRCS State and Federal Offices, MnDOT, MnGeo, and Nobles, Le Sueur, Olmsted (included City of Rochester), and Winona (included City of Winona) Counties
- Lidar collection occurring now in SE Driftless LAA
- Missouri River Big Sioux block set for a Spring 2022 collection



Lidar Acquisition: Southern BAA – Missouri Big Sioux & SE Driftless Blocks

Description

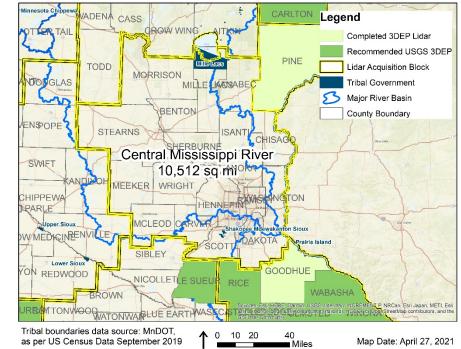

- Vendor was able to put aircraft on this project following completion of a nearby job.
- Collection was outside of contract, but vendor understands lidar base specification and the QC the data must met for certification
- QL0 Counties
 - ASPRS Compliant QL0 Lidar
 - Will meet **1.67** cm RMSEz Non-veg accuracy for check points



Planning in Progress

Lidar Acquisition Areas and Blocks of Interest

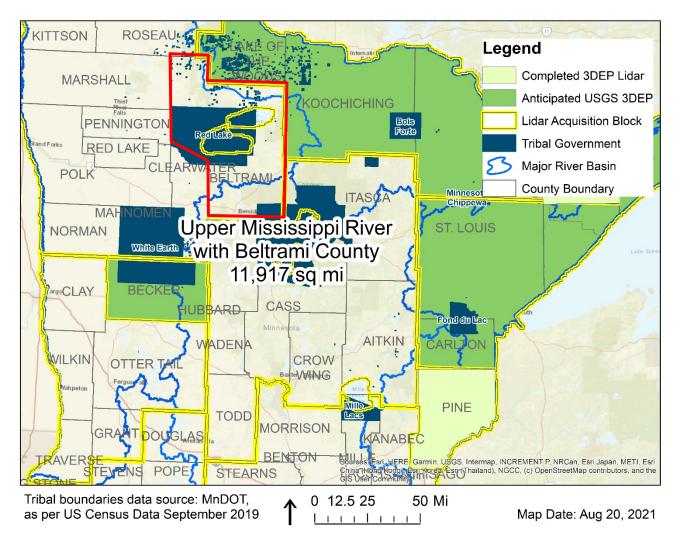
3DGeo Outreach: Central Mississippi River (Metro) Block


Estimated USGS 3DEP Contribution		Total Partner Contributions Needed	
%	\$	%	\$
40%	\$1,387,584	60%	\$2,081,376
10,512 square miles at <mark>\$330</mark> per square mile = \$3,468,960 TOTAL			

3DGeo Outreach: Partners and Funds Needed: Central Mississippi River Lidar Acquisition Block

• TOTAL Est Funds Needed for QL1: \$3,468,960

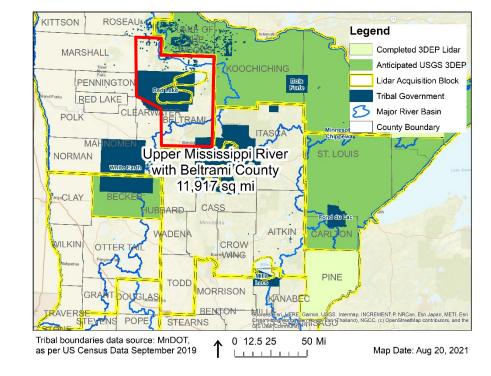
- Total estimated cost assumes \$330 per square mile for QL1
- Upgrade to QL0 estimated cost is \$440 per square mile
- Partner is responsible for the full upgrade cost between QL1 to QL0
- 18 Counties* 10,512 square miles
 - Estimates below are average and equal cost for each county in the LAB


Contribut	ors	Goal Request %		Goal Partnership Amount (\$)
USGS		40		1,387,584
Partners		<mark>60</mark>		2,081,376
	LAB Counties	~ <mark>30</mark> **	\$57,816	1,040,688
	All Others [‡]	~ 30**	k	1,040,688
QL1 Total		100		3,468,960

*Anoka, Benton, Carver, Chisago, Dakota, Hennepin, Isanti, Kanabec, McLoed, Meeker, Mille Lacs, Morrison, Ramsey, Scott, Sherburne, Stearns, Washington, Wright **This is an estimate, up to 30% of the TOTAL, and dependent on the Lidar Acquisition Block

+ May include Federal and State agencies, Offices, local governments, non-profits, and watershed management boards

3DGeo Outreach: Upper Mississippi River (Central Lakes) Block


Estimated USGS 3DEP Contribution		Total Partner Contributions Needed	
%	\$	%	\$
40%	\$1,573,044	60%	\$2,359,566
11,917 square miles Estimated at <mark>\$330</mark> per square mile = \$3,932,610 TOTAL			

3DGeo Outreach: Partners and Funds Needed: Upper Mississippi River Lidar Acquisition Block

• TOTAL Est Funds Needed for QL1: \$3,932,610

- Total estimated cost assumes \$330 per square mile for QL1
- Upgrade to QL0 estimated cost is \$440 per square mile
- Partner is responsible for the full upgrade cost between QL1 to QL0
- 8 Counties* 11,917 square miles
 - Estimates below are average and equal cost for each county in the LAB

Contribut	ors	Goal Request %		Goal Partnership Amount (\$)
USGS		40		1,573,044
Partners		<mark>60</mark>		2,359,566
	LAB Counties	~ <mark>30</mark> **	\$147,473	1,179,783
	All Others ⁺	~ <mark>30</mark> **		1,179,783
QL1 Total		100		3,932,610

- * Aitkin, Beltrami, Cass, Crow Wing, Hubbard, Itasca, Todd, Wadena
- **This is an estimate, up to 30% of the TOTAL, and dependent on the Lidar Acquisition Block
- + May include Federal and State agencies, Offices, local governments, non-profits, and watershed management boards

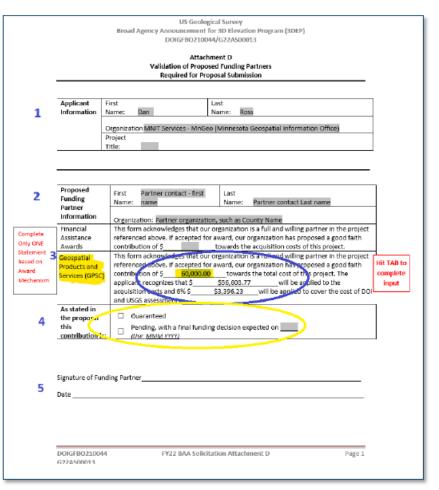
Next Steps

Timeline - upcoming steps

Date	Task
August 27	Optional: Partners provide notification to lidar@state.mn.us of any upgrade request(s)
September 3	3DGeo submits IGCE to obtain costs for final lidar acquisition areas, and upgrade areas
September ??	USGS provides cost estimates to 3DGeo in response to IGCE 3DGeo passes shares upgrade costs with partners
September 24	Partners provide completed "Attachment D" to <u>lidar@state.mn.us</u>
October 1	BAA application submitted by MNIT on behalf of 3DGeo partners
Winter	USGS provides approval of grant
January/February	MNIT executes Joint Powers Agreements (JPAs) with each local partner MNIT signs Joint Funding Agreement (JFA) with USGS on behalf of all local partners Statement of work (SOW) is agreed for work
March?	After JFA, SOW complete; USGS contracting moves forward; Vendor and partners work on detailed technical task order for lidar acquisition
March	Partners provides funds towards task order
March/April	Task order issued
April/May	Lidar Acquisition

https://www.mngeo.state.mn.us/committee/3dgeo/acquisition/status.html

Attachment D: is the way we communicate funding with USGS


Attachment D FY22 Form Completion Tips

Thanks so much for working with the MN GAC 3D Geo Committee on a USGS 3DEP BAA grant request. Here are some tips on filling out the Attachment D form. Please contact us at lidar@state.mn.us if you need more assistance or have questions.

1. Applicant Information:

MNIT – MnGeo will be submitting the application to USGS on behalf of

- the Geospatial Advisory Council's 3D Geo Committee.
 - a. First Name: Dan Last Name: Ross
 - b. Organization: MNIT Services MnGeo (Minnesota Geospatial Information Office)
 - c. Fill out the project title, if known.
- 2. Proposed funding partner:
 - Fill out the first and last names of the contact at your organization
 - Fill out the name of your organization, such as the County name, or State Agency name and division
- 3. Statement section:
 - a. Fill out only the GPSC section (highlighted in yellow below).
 - Enter your organization funding amount in the first input box (highlighted in yellow).
 - c. Note that the next two lines will be automatically calculated when you hit the TAB key. These are showing that a percentage of the contribution will be put to the project management by USGS and DOI.
- 4. Contribution Type section:
 - Select either guaranteed or pending box.
 Pending could be selected by a county if they have set aside funds, but they need to be approved by the Board. The Board meeting data can be put in the date field
 - b. If the pending box is selected, enter the date in the format shown.
- 5. Signature section:
 - a. The funding partner in section 2 signs and dates the form.
- 6. Email your completed form to lidar@state.mn.us

FAQs - Administration of Funding and Contracting

- Under 3DEP Geospatial Product and Service Contracts (GPSC), the USGS will negotiate and manage the vendor contract
- Partners are encouraged to participate in an independent check of the data, but the USGS and the Vendor handle all official QA/QC
- MNIT MnGeo will manage the joint powers agreements with partners
- Funding agreements need to be in place 90 days prior to acquisition
- Review our Status Page, previous slide, and email us with questions, regarding the timing of invoicing and payments

Questions & Discussion

FAQs - Deliverables

- What other deliverables can be purchased and how will those addendums be handled in the contract?
- How will the data be delivered? Point cloud? Contours? DEM?
- What coordinate system will lidar data be delivered?

FAQs - Costs

- What is the cost per county for each LAB?
- Will data be acquired for counties in the LAB that have opted out of contributing?
- How will funds be collected for those areas?

FAQs - Quality Level

- Explain the specification differences between QL1 and QL0.
- What are the advantages of buying up to QLO?
- What is the cost structure for buying up to QLO? Can a city decide to purchase QLO data or must it be a countywide decision?